International Journal of Research in Advent Technology, Vol.6, No.8, August 2018
E-ISSN: 2321-9637
Available online at www.ijrat.org

Properties of One Modulo N Mean Graphs

D. Muthuramakrishnan® K. Bhagyasri?
!Associate Professor, Department of Mathematics, National College, Trichy
?Research Scholar, Department of Mathematics, National College, Trichy

Abstract - The concept of mean labeling was introduced by Somasundaram and Ponraj [11]. Swaminathan and

Sekar [12] introduced the concept of one modulo three graceful labeling.

Jayanthi and Maheswari [8]

introduced one modulo three mean labeling of graphs. It is further studied by Gayathri and Prakash in ([2]-[5]).
In [9], we have introduced the concept of one modulo N mean labeling of graphs and obtained its labeling for
some family of graphs. It is further studied by us in [10]. In this paper, we investigate the properties of one

modulo N mean graphs.
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1. INTRODUCTION

By a graph G = (V(G), E(G)) with p vertices and g
edges we mean a simple, connected and undirected
graph. In this paper a brief summary of definitions and
other information is given in order to maintain
compactness. The term not defined here are used in
the sense of Harary [7].

A graph labeling is an assignment of integers to
the vertices or edges or both subject to certain conditions.
Somasundaram and Ponraj [11] have introduced the
notion of mean labeling of graphs. Swaminathan and
Sekar [12] introduced the concept of one modulo three
graceful labeling. Jayanthi and Maheswari [8]
introduced one modulo three mean labeling. It is
further studied by Gayathri and Prakash in ([2]-[5]). In
[9], we have introduced the concept of one modulo N
mean labeling and obtained results for some family of
graphs. It is further studied by us in [10]. In this paper,
we investigate the properties of one modulo N mean
graphs.

2. MAIN RESULTS

Definition 2.1

A Graph G = (p, q) is said to be one modulo
three mean graph if there is a function f from the
vertex of G to the set {0, 1, 3,4, 6, 7, ..., 3g — 3, 3 — 2}
with f is one-one and f induces a bijection f~ from the
edge set of G to the set {1, 4, 7, 10, .., 3q -5, 39 — 2}

{f(u)+ f(v)—l
2

where f(uv) = and the function f is

called as one modulo three mean labeling of G. Here
f"(uv) =1(mod?3) for every edge uv in G and [ ]
represents the ceil function.

Definition 2.2

A Graph G = (p, q) is said to be one modulo N
mean graph (OMNMG) if there is a function f from

the vertex of Gtothe set {0, 1, N, N+ 1,2N, 2N+ 1....,
N(g — 1), N(g — 1) + 1} with f is one-one and f induces

a bijection f* from the edge set of G to the set {1, N + 1,
2N+ 1,3N+1,...,N@g-2) +1, N(@ - 1) + 1} where

" (uv) :( ww and the function f is called as one
modulo N mean labeling(OMNML) of G where N is
any positive integer. Here, f"(u,v) = 1(mod N) for
every edge uv is G and [ | represents the ceil function.
Example 2.3

The graph shown in Figure 2.1 is a one modulo 4
mean graph.

Figure 2.1: One modulo 4 mean graph

Observation 2.4

() N(g-1)+1=1(mod N) for all g and N.
(i) IfNiseventhen N(g—-1) + 1isodd forall g.

(iii) 1f g is odd then N(q — 1) + 1 is odd for all N.
(iv) Ifgisevenand N is odd then N(q— 1) + 1 is even.
1(mod 2N) gisodd
(v) N(g-1+1= .
N +1(mod 2N) qiseven
(vi) IfN is odd then N(g—1) is even for all g.
(vii) If q is odd then N(q — 1) is even for all N.

(viii) If g is even and N is odd, then N(q — 1) is odd.
. O0(mod 2N) qis odd
(ix) N(q-1)= .
N(mod 2N) qiseven

(X) Ifx=0(mod N) then x = 0(mod 2N) or N(mod 2N).
(xi) If x = 1(mod N) then x = 1(mod 2N) or
N + 1(mod 2N).
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Proof

(i) to (iv) and (vi)-(viii) are routine to check. (ix) follows
from (v).

We first prove (x).

Let x = 0(mod N) then x = Nk for some k.

Case 1: N is even.
Then x is even.

Sub case 1: k is even.
Then let k = 2| for some 1.

Therefore x = Nk = N2l = 0(mod 2N)

Sub case 2: k is odd.
Let k=21 + 1 for some I.
Then x =N k =N(2I + 1) = N2l + N = N(mod 2N).
Case 2: N is odd.
Sub case 1: x is even.
Then k is even and hence k = 21 for some I.
.. X =Nk =N2l =0(mod 2N).
Sub case 2: x is odd.
Then k is odd and hence k = 2l + 1 for some I.
S X=Nk=N(2I + 1) =N(mod 2N).
Hence the property (x) is true.
We now prove (xi)
Let x = 1(mod N) then x — 1 = 0(mod N)
by (x),
X —1=0(mod 2N) or x — 1 = N(mod 2N)
Therefore x = 1(mod 2N) or
x =N + 1(mod 2N)
Thus the property (xi) is proved.
We now prove the property (v).

Case 1: g is odd.

Thenx =N(q-1) + 1 is odd.
q— 1 being even, let g — 1 = 2| for some I.
Therefore x = N(2I) + 1 = 1(mod 2N)
Case 2: g is even.

q—1 being odd, q— 1 =21 + 1 for some I.
Thereforex=N(g-1)+1=NQ2I+1)+1=

2IN+N+1=N+1(mod 2N)

Thus the property (v) follows.

Property 2.5

If a graph G is a one modulo N mean graph for
any N then 0 and 1 are adjacent vertex labels.

Proof

The induced edge label 1 can only be obtained by
the adjacent vertex label pair (0, 1). Therefore 0 and 1
are ought to be vertex labels.

Property 2.6

If a graph G = (p, g) is a one modulo N mean
graph for any N then N(qg — 1) and N(q — 1) + 1 are
ought to be the adjacent vertex labels.

Proof

By Definition 2.2, the number N(g — 1) + 1 has to
be an edge label. In order to have N(q — 1) + 1 as an
induced edge label, the only possible adjacent vertex
label pair is (N(q — 1), N(q — 1) + 1). Hence N(q — 1)
and N(g — 1) + 1 are adjacent vertex labels.

Theorem 2.7

Let G = (p, q) be a one modulo N mean graph
with one modulo N mean labeling f. Let t be the
number of edges whose one end vertex label is even
and other is odd. The Z dv) f(v)+t=q(N(g-1)+2)

vev(G)

where d(v) denotes the degree of the vertex v.

Proof
3 d(v)f(v):{ 3 f*(uv)—%}
wueE(G)

vev(G)
=2[1+(N+1)+(2N+1)+....
(N(@-1) +1)] -t
a (w_yl)
=2 f(N(q—l)ﬂ) —t
=q(N(@-1)+2) -t
Therefore " d(v)f(v)+t=a(N(q-1)+2)

vev(G)

Corollary 2.8
If G =(p,q),g=2isaone modulo N mean graph
with one modulo N mean labeling f then

> dw)f(v)=Ng.
vev(G)
Proof
By Theorem 2.7,
2 dW)f)+t=aq(N(q-2)+2)

vev(G)

2 dW)f(v)=a(N(@-1)+2)-t

vev(G)

D d(v)f(v) =q(N(g-1)+29-2q
vev(G)
(sincet<q<2q)

> dv)f(v)=aN(g-1)

vev(G)

> d(v) f(v) > Ng (since q > 2).

vev(G)

Property 2.9

Let G = (p, q) be a I-regular one modulo N mean
graph with | even. Let t be the number of edges whose
one end vertex label is even and other is odd then t is
even.
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Proof
By Theorem 2.7,
> dW)f(v)+t=q(N(q-1)+2) (D

vev(G)
G being I-regular,

| Z f(v)+t=q(N(q-1)+2)

vev(G)

t=qN@@-1)+2) -1 > (V) ()

vev(G)
If q is even then | is even implies right hand side
of (2) is even.
If q is odd then N(q — 1) + 2 is even and | is even,
it follows that right hand side of (2) is even. Hence t is
even.

Corollary 2.10

If G = (p, q) is a 2-regular one modulo N mean for
any N then t is even.

Theorem 2.11

Let G = (p, q) be a 2-regular one modulo N mean
graph for any N. Let f be a one modulo N mean
labeling of G. Let x € {0, 1, 2N, 2N + 1, .... N(q - 1),
N(g - 1) + 1} = S\f(V(G)).

Let t be the number of edges whose one end
vertex label is even and the other end is odd then

Lo, @-DN-D
2 2
Proof
By Corollary 2.10, t is even say 2m. By Theorem 2.7,
Y dWfW+t=q(N(g-1)+2)
vev(G)
2y f(v)+2m=q(N(q-1)+2)
vev(G)
St em=3NEAD2) o ons NG+
vev(G) 2
(L+2N+1 .. N(g-1) +1)—x+m=30@=D*2)

2

[qTHjN(q_1)+[%l)(N(q—1)+2)—x+m=w

(U an(@-y +2)-xem - A0 DD

(QTHJ[N(q_l)H]_q(N(q2—1)+2) v

[qT”j(N(q—1)+1>—%(N(q—1)+2)=x—m
gGN(@-D+N(q-1)+qg+1-aN(@-D)-2q _
2

—m

N(@-D-q+1
2

=X—Mm

N@-D-(a-1) _
2
(@-DIN-D __

2

X—m
—-m

o (@-DIN-D
2

oL @-dN-1
2 2

t, @-yN-n

2 2

Thus x =

Property 2.12

Let G = (p, q) be a one modulo N mean graph for
any N.
(i) Ifqgis oddthen 0, 1, N(q — 1) + 1 cannot be the
vertex labels of the cycle C; contained in G for
all N.
If N is even then 0, 1, N(g — 1) + 1 cannot be the
vertex labels of the cycle C; contained in G for
all g.
If q is even and N is odd then 0, 1, N(q — 1)
cannot be the vertex labels of the cycle C;
contained in G.
If N is even then 1, N(q — 1), N(g — 1) + 1 cannot
be the vertex labels of the cycle C; contained in
G forall g.
If g is odd then, 1, N(q — 1), N(g — 1) + 1 cannot
be the vertex labels of the cycle C; contained in
G for all N.
If g is even and N is odd then 0, N(g — 1),
N(g — 1) + 1 cannot be the vertex labels of the
cycle C; contained in G.

(ii)

(iii)

(iv)

v)

(vi)

Proof

Let G be a one-modulo N mean graph for any N.
Let ag, a;, a, be the vertices of a cycle C; contained in
G as in Figure 3.2.

ap

a a
Figure 3.2
(i) q is odd. Then by observation 2.4 (iii), N(q — 1) + 1
is odd.
Suppose 0, 1, N(q — 1) + 1 be the vertex labels of

the cycle C; contained in G. Then without loss of
generality, assume

f(a) =0, f(a) =1 f(a)=N@-1)+1
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1 N(g-1)+1

In this case, the induced edge labels are:
" (aa) =1
t(aa,) = I* N(qz—l)+1: N(q—21)+2

* N(g-1)+1+0+1 N(gq-1)+2
t(aa,) = N@ )2 _ (qz)
a contradiction to G is a one modulo N mean graph.
Hence (i) follows.
(i) Let N be even. Then by observation 2.4 (ii),
N(g —1) + 1 is odd for all g.

Suppose 0, 1, N(q — 1) + 1 are the vertex labels of
the cycle C; contained in G then by following the
argument used in the proof (i) yields a contradiction to
G is a one modulo N mean graph. Hence (ii) is proved.
(iii) Let g be even and N is odd. Then observation 2.4
(viii), N(g — 1) is odd.

Suppose 0, 1, N(g — 1) are the vertex labels of the
cycle C; contained in G. Then without loss of generality,

assume f(a,) =0, f(a) =1, f(a,) =N(@Q-1).

0
1 N( - 1)

In this case, the induced edge labels are:
f(aa) =1

. N(g-1)+1

(g, = 1D

* N(q-1)+0+1 N(g-1)+1
f*(aa,) = N 2) _ (qz)

a contradiction to G is a one modulo N mean graph.
Thus (iii) is proved.
(iv) Let N be even. Thus by observation 2.4, N(q—1) + 1
is odd for all q.

Suppose 1, N(g — 1), N(g — 1) + 1 are the vertex
labels of the cycle C; contained in G.
Assume without loss of generality,

f(a) =1, f(a) = N(@-1), f(a)=N@-1)+1

N(-1)

In this case, the induced edge labels are:

N(g-1)+1

f*(aoai) - 1+ N(qz—1)+l: N(q—21)+2
f(aa,) =N(@-1)+1
) N(g-1)+2
aa) = D2

a contradiction to G is an one modulo N mean graph.
Thus (iv) is proved.

(v) Let q be odd. By observation 2.4 (iii), N(q— 1) + 1
is odd for all g.

Suppose 1, N(q — 1), N(g — 1) + 1 are the labels of
the vertices of the cycle C; contained in G then by
following the argument used in the proof of (iv) yields
a contradiction to G is a one modulo N mean graph.
Hence (v) is proved.

(vi) Let g be even and N be odd. Then by observation 2.4
(viii), N(q — 1) is odd.

Suppose 0, N(q — 1), N(g — 1) + 1 are the vertex
labels of the cycle C; contained in G, assume without
loss of generality

f(a) =0, f(a) =N(@-1), f(a,) =N(@-1)+1
0

N@-1)

In this case, the induced edge labels are:
0+N(g-1)+1 N(g-D+1

N(g-1)+1

f () = 5 5
. 0+N(g-D+1 N(g-1)+1
(aa,) = 2F (c; )+1_ (q2)+

a contradiction to G is a one modulo N mean graph.
Hence the theorem.

Corollary 2.13

The cycle C; is not a one modulo N mean graph
for any N.
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